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ABSTRACT 

Recent observational evidence suggests that few clusters and groups of galaxies have achieved dynami- 
cal equilibrium, where a Gaussian distribution of radial velocities might be expected. The canonical 
estimation techniques, which either assume Gaussian parent populations or clip observed velocity distri- 
butions until the Gaussian assumption is satisfied, are not, in general, minimum variance estimators of 
the kinematic properties of such clusters. In addition, a detailed examination of the local kinematical 
properties of clusters requires the use of efficient statistical estimators which are insensitive to localized 
misbehavior in small datasets. For these reasons we suggest that the traditional methods of assigning 
cluster mean velocities, dispersions, and confidence intervals on these quantities are no longer adequate. 
In this paper we discuss alternative estimators of the kinematical properties of clusters of galaxies— 
estimators that are resistant in the presence of outliers, and robust for a broad range of non-Gaussian 
underlying populations. Because a number of different estimators may be used for any given quantity, 
we urge a change in the nomenclature to one that does not imply an underlying probabalistic model: we 
suggest Cu for the central location (“mean”), Sv for the scale (“dispersion”), and ICU V and ISV for the 
set of confidence intervals about Cu and Sv, respectively. The subscripts u and v indicate the methods 
used to obtain the sample estimate. Extensive simulations for a number of common situations realizable 
in small to large samples of cluster radial velocities allow us to identify minimum variance estimators. 
We also explore the estimation of confidence intervals using the jackknife and bootstrap resampling 
techniques, and compare these methods to simple formulas based on sample estimates of central loca- 
tion and scale. Our tests reveal that the family of location and scale estimators based on Tukey’s 
biweight prove consistently superior for most applications. Confidence intervals on location based on 
the biweight also prove superior. Estimators of confidence intervals on scale require resampling— 
although bootstrapping is preferred, less computationally demanding estimators based on the jackknife 
of the biweight scale are shown to be adequate for most situations. 

I. introduction 

Recent observational and theoretical evidence suggests 
that many clusters of galaxies have yet to achieve dynamical 
equilibrium, where an isotropic distribution of galaxy orbits 
is expected (see Fitchett 1988 and Sarazin 1987 for good 
reviews of this topic). Observations of subclusters within 
clusters vitiate models that assume a single gravitational po- 
tential well (Forman etal. 1981; Geller and Beers 1982). In 
the regions of massive D or cD galaxies a mix of galaxy orbits 
may exist: a bound, low-dispersion population soon to be 
consumed by the central galaxy as well as galaxies on pre- 
dominantly radial orbits (Tonry 1985; Bothun and Schom- 
bert 1988; Bothun and Schombert 1989). “Central” sub- 
structure may exist in a number of clusters, clouding 
interpretation of the dynamical significance of the D/cD 
galaxy (Fitchett and Webster 1987; Fitchett and Merritt 
1988; Oegerle, Fitchett, and Hoessel 1989). On larger scales, 
infalling spirals (or groups of spirals) may have yet to com- 
plete their first cluster crossing, and thus cannot be in equi- 
librium with the underlying mass distribution (Huchra 
1985; Binggeli, Tammann, and Sandage 1987). Further 
complications are introduced by the likelihood that clusters 
may have formed at the interstitial locations of large-scale 
“bubbles” of luminous matter, with the result that radial- 
velocity surveys of clusters will include a correlated (rather 
than random) foreground/background contamination (de 
Lapparent el al 1986). Consequently, the interpretation of 
redshift surveys in clusters of galaxies may be confounded by 
the presence of asymmetries, heavier-than-Gaussian tails, 
and outliers in velocity distributions. 

Although advances in multifiber spectroscopy will soon 
make available large redshift samples for many clusters, it is 
clear that the behavior of statistical estimators in the small-« 
limit will continue to be an important issue. Critical evalua- 
tion of the statistical significance and dynamical importance 
of local properties in clusters will require examination of 
small subsamples of velocities (Dressier and Schectman 
1988 ). Surveys of poor clusters and compact groups are con- 
strained to quantify kinematic properties based on small 
numbers of velocities ( Huchra and Geller 1982; Geller and 
Huchra 1983; Beers etal. 1984; Maia, DaCosta, and Latham 
1989; Beers et al 1990). High-redshift clusters will, for the 
foreseeable future, have a limited number of measured red- 
shifts per cluster (Newberry, Kirshner, and Boroson 1988, 
and references therein). 

Velocity dispersions in clusters commonly form the basis 
for dynamical estimates of cluster mass via application of the 
virial theorem. Because a virial mass estimate is proportional 
to the square of the velocity dispersion, small errors in the 
estimate of the dispersion result in correspondingly larger 
errors in the derived mass. Studies of the velocity-dispersion 
profiles in rich clusters require binning of velocities into 
small subsamples (Kent and Gunn 1982; Dressier and 
Schectman 1988; Ostriker et al. 1988), which may increase 
the effect of a few deviant velocities. Recent attempts to in- 
corporate both velocity and spatial information to evaluate 
the existence of substructure (Dressier and Schectman 1988; 
West and Bothun 1990) require local estimates of the veloc- 
ity dispersion. This procedure necessarily involves no more 
than a few galaxies (typically ten) with measured redshifts 
in a given subsample. The power of such tests could clearly 
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be improved with the adoption of efficient, as well as resis- 
tant, estimators. 

The majority of the statistical tools conventionally used 
for the analysis of radial-velocity distributions in clusters of 
galaxies were first applied at a time when the apparently 
satisfactory agreement of number-density profiles with iso- 
thermal models and the paucity of kinematical information 
for most clusters led to the assumption that the observed 
radial velocities were drawn from a Gaussian parent popula- 
tion. The difficulties outlined above are sufficiently severe to 
prompt a new look at methods for quantifying cluster veloc- 
ity distributions. 

The mean and standard deviation are known to be opti- 
mally efficient (minimum variance) estimators of central 
location and scale when the underlying population is Gaus- 
sian. Unfortunately, both estimators offer little or no resis- 
tance in the presence of outliers because the tails of any sam- 
ple are heavily weighted. Canonical estimates of confidence 
intervals about the central location and scale also suffer 
when the normality assumption is violated. Ideally, we 
would prefer estimators that are efficient for the Gaussian 
case, retain high efficiency in the presence of significant de- 
viations from the normality assumption (such as heavy 
tails), and are not grossly distorted by the effects of outliers. 
Such estimators have the advantage that they could be ap- 
plied to data suspected of containing outliers in an objective, 
rather than blatantly subjective, manner. 

In Sec. II we review the procedures commonly used to 
quantify cluster velocity distributions. In Sec. HI we discuss 
alternative estimators of location and scale. The ambitious 
task of assigning realistic confidence intervals on these esti- 
mators is discussed in Sec. IV. In Sec. V we compare these 
alternative estimators with the canonical methods by simu- 
lating a variety of commonly occurring situations. We pres- 
ent our recommendations in Sec. VI. Section VII presents a 
discussion and summary. 

II. THE CANONICAL METHODOLOGY 

Before we present suggested improvements, it is enlight- 
ening to review the procedures presently in common use. 

Yahil and Vidal (1977) test the hypothesis that the ob- 
served radial-velocity distributions in clusters of galaxies are 
consistent with a Gaussian. Based on the limited velocity 
data available at that time, they find that the Gaussian is a 
good description except for contamination due to “field” 
galaxies. The tests that these authors apply include the a test, 
the u test, and the W test of non-normality, a powerful omni- 
bus test due to Shapiro and Wilk ( 1965 ). Having identified a 
number of clusters that deviate from normality, Yahil and 
Vidal apply a “3-sigma” cleaning procedure to eliminate 
presumed field galaxy contamination. Chapman, Geller, 
and Huchra (1987), Chapman, Geller, and Huchra (1988), 
and Postman, Geller, and Huchra (1988) measure cluster 
means and dispersions after trimming from the tails of the 
velocity distribution until a y2 test is unable to reject the 
Gaussian hypothesis, a method recommended by Fernley 
and Bhavsar (1984) based on A-body simulations of clus- 
ters. The “adhoc” clipping procedure discussed by Zablu- 
doff, Huchra, and Geller ( 1990) is a simplified form of the 
statistical procedure known as “gapping.” Unfortunately, 
the method employed by these authors does not account for 
the fact that gaps in a given dataset, when used to assess the 
presence of outliers, should be properly weighted by their 
position within the data batch—a large gap in the central 

portion of a sample is clearly more significant than an equiv- 
alent gap in the sparsely populated tails (see Wainer and 
Thissen 1976 for a detailed discussion of this point). 

As we show in Sec. VI, pruning procedures that compare 
to an assumed probablistic model ( such as the Gaussian ) are 
generally poorly behaved due to the nonresistance of the 
standard deviation and their insensitivity to symmetrically 
distributed outliers. In addition, there is often no clear indi- 
cation that a given velocity sample differs from a Gaussian. 
The a test, u test, and W test, for example, are sensitive ( with 
varying power) to different kinds of deviations, and can 
yield conflicting opinions as to whether clipping is indicated 
for a given cluster. Of course, because the underlying distri- 
bution may not be Gaussian at all, the application of these 
model-dependent techniques to quantify cluster velocity dis- 
tributions is surely not an optimum procedure. 

Quintana and Lawrie ( 1982) attempt to reduce the sam- 
ple-to-sample variance of their estimates of velocity disper- 
sions in clusters by defining the mean of a sample of cluster 
velocities to be coincident with the velocity of the D/cD 
galaxy (where present), then measuring the standard devi- 
ation about this value. While this method may appear rea- 
sonable for some clusters, it is ill-defined for clusters in 
which there is more than one D/cD galaxy (e.g., Coma, 
A754, A957), and will not apply at all when a cluster (or 
subcluster) does not possess a single dominant galaxy. Giv- 
en the recent claims of displacements in velocity space of a 
number of cD galaxies (Bothun and Schombert 1988; Bow- 
er, Ellis, and Efstathiou 1988; Hill etal. 1988; Sharpies, Ellis, 
and Gray 1988; Bothun and Schombert 1989), we are all the 
more hesitant to apply this technique. 

In a widely referenced paper, Dáñese, De Zotti, and di 
Tullio ( 1980, hereafter referred to as DDd) take the Gaus- 
sian distribution for cluster velocities as given and discuss 
the application of classical statistical methods for calculat- 
ing the expected errors in estimates of cluster means and 
dispersions. The procedures they employ, however, are 
strongly dependent on the normality of the underlying ve- 
locity distribution, and are inappropriate in the presence of 
even slight deviations from this assumption (Pearson 1931; 
Box 1953). In general, an incorrect normality assumption 
will produce unnecessarily large confidence intervals about 
the mean and optimistically short intervals about the disper- 
sion. 

III. ALTERNATIVE METHODS FOR ESTIMATION OF LOCATION 
AND SCALE 

Recent developments in statistical research have provided 
a number of improved methods for quantifying the nature of 
datasets without requiring models for the underlying popu- 
lation. Many of these developments are summarized in the 
highly readable book, Understanding Robust and Explora- 
tory Data Analysis (Hoaglin, Mosteller, and Tukey 1983, 
hereafter referred to as UREDA)—the astronomer employ- 
ing robust analysis techniques can be pointed toward no bet- 
ter source. Rice ( 1988 ) presents a discussion of the pertinent 
statistical issues on a less technical level. 

Below we begin with a number of definitions required for 
the present discussion. We have drawn freely from many 
sections of UREDA in preparing the following comments. 

a) Resistance, Robustness, and Efficiency 

The notions of resistance, robustness, and efficiency are 
central to an appreciation of why the canonical methodology 
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should be viewed as suspect, and thus bear some discussion. 
Resistance implies an insensitivity to localized misbehav- 

ior in data. A resistant estimator, such as the sample median, 
changes little when a small part of the data is replaced by 
new (possibly very different) numbers. In contrast, the sam- 
ple mean is clearly nonresistant. Resistant methods depend 
on the bulk of the data and pay little attention to outliers. 

Robustness implies insensitivity to the assumed nature of 
the population from which data are drawn. A robust estima- 
tor will work well (that is, exhibit a small variance) without 
relying on a detailed match of the data to the underlying 
probabalistic model (if indeed one even has such a model). 
Viewed from a robust perspective, models that initially com- 
pare to a Gaussian model prior to the pruning of data are 
clearly undesirable. The kinematic information contained in 
a velocity distribution should best be summarized by statis- 
tics that do not depend explicitly on the analyst’s opinion of 
whether or not the Gaussian assumption is satisfied. 

Efficiency refers to the quality of information one can de- 
rive from data employing a given method. In data-limited 
applications efficiency is often of primary importance. An 
efficient method will extract the required information from 
the data in hand, whereas an inefficient method may require 
a doubling or even tripling of the sample before an equivalent 
result can be obtained. We could improve efficiency, for ex- 
ample, by decreasing the variance of an estimator, or by pro- 
ducing a shorter confidence interval. Techniques for mea- 
suring the efficiency of estimators of central location, scale, 
and associated confidence intervals are discussed in Sec. Ye 
below. 

b) Order Statistics, Ranks, and Depths 

In the estimators that follow, we make use of the so-called 
“order statistics’’ of a sample, defined from the data sorted in 
ascending order, i.e., 

(1) 

where x¡ is the /th smallest observation, and is referred to as 
the /th order statistic of the sample. The rank of a given 
observation is defined in one of two ways—counting up from 
the smallest value or counting down from the largest value. 
In the first case we are measuring the observation’s upward 
rank; in the latter, its downward rank. Note that according 
to this definition has an upward rank / and downward 
rank « + 1 — /. The depth of a given observation is then de- 
fined as the smaller of its upward and downward rank. 

Using the notion of depth one can extract a number of 
summary statistics for a given sample. The most familiar 
such statistic is the sample median {M). For n odd, the me- 
dian’s depth is defined as (« + 1 )/2. For n even, the median 
is taken as halfway between xk and xk+x: 

M = xk+Xi n— 2k 1, 

M = {(xk+xk+l), n — 2k. (2) 

Another useful, though not as familiar, set of summary 
statistics are the fourths of a data sample. The fourths are 
defined such that 

depth of fourth = [depth of median] + 1 , (3) 

where the brackets [x] stand for the largest integer not 
greater than x. The difference in the fourths of a dataset (as 
counted from each end of the sample) is often referred to as 
the Inter-Quartile Range (IQR). 

c) Resistant and Robust Estimators of Location 
1) The median 

Perhaps the classic example of a resistant location estima- 
tor is the sample median M, defined above. The median has 
the (sometimes desirable) characteristic of putting zero 
weight on all but one (or two) central order statistics. The 
median thus achieves a high breakdown bound, defined as 
the largest possible fraction of observations for which there 
exists a bound on the change of the estimate when that frac- 
tion is altered without restriction (Hampel 1968). For the 
median, the maximum breakdown bound is 1/2 (for the 
sample mean the breakdown bound is identically zero). The 
price one pays for such a high breakdown bound is sensitiv- 
ity to rounding and grouping of the data. Nevertheless, for 
tiny samples («<5) there is often no better choice. In the 
discussion below, the notation CM will indicate the estimate 
of central location provided by the median. 

2) The broadened median, trimean, and trimmed means 

We would prefer estimators of central location that incor- 
porate the inherent resistance of the sample median while 
improving somewhat on its reliance on one or two data 
points. One useful measure which accomplishes this goal is 
the so-called broadened median, or BM (Andrews et al. 
1972). The BM estimator averages the sample median and 
either one or two order statistics on either side of the median, 
depending on sample size. Using the conventions of Rosen- 
berger and Gasko ( 1983 ) : 

For n odd, BM is the average of the three central 
order statistics when n is in the range 5<«< 12; the five 
central order statistics for «>13. For n even, BM is a 
weighted average of the central four order statistics for 
5<«<12 with weights (1/6, 1/3, 1/3, and 1/6); for 
«> 13 it is the weighted average of the central six order 
statistics with weights 1/5 to the central four and 
weights 1/10 to the end ones of the six. 

We use the notation to indicate the central location 
estimator obtained from the broadened median. 

The trimean (TRI) provides an alternative, and computa- 
tionally simpler, measure of central location to BM. The 
TRI estimator is based on an average of the sample median 
and the lower and upper fourths: 

TRI = í(Ft
/ + 2M + Fm), (4) 

where F¡ and Fu represent the lower and upper fourths, re- 
spectively. CTRI is the trimean estimator of central location. 

For many groups and clusters of galaxies, we are con- 
cerned about the influence of a few extreme velocities on our 
estimate of central location. A useful technique in such cases 
is to simply calculate the mean of the dataset after a certain 
percentage (a) of the data have been trimmed from the tails. 
For example, a 20% trimmed mean, T10i of a sample of size 
10 is the straight average of the six remaining observations 
after setting aside the two largest and two smallest data 
points. We would like to know which fraction a is optimal 
for a variety of Gaussian and non-Gaussian situations. Simu- 
lations of samples with « = 10 and « = 20 for contaminated 
normal distributions (Rosenberger and Gasko 1983) indi- 
cate that for « = 10 a trim between 10% and 20% produces 
a minimum variance in the estimator. For n = 20, between 
5% and 10% behaves well. For long-tailed distributions 
such as the logistic or Cauchy, somewhat heavier trimming 
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is indicated, on order 25%. The 25% trimmed mean, T25, is 
nothing more than the average of the data within the central 
quartiles, and is often referred to as the midmean or MID. 
Below we indicate the central location estimated with the 
trimmed mean as Ca. The midmean location estimate is 
^MID. 

3) The biweight 

The hi weight location estimator was suggested by Tukey 
after the Princeton Robustness Study (Andrews et al. 1972) 
as a possible improvement for non-Gaussian or contaminat- 
ed normal distributions, and comes from the broad family of 
estimators known as M estimators of location. The defining 
characteristic of Af estimators is the minimization of a func- 
tion of the deviations of each observation from the estimate 
of location. In particular, the bi weight uses a so-called redes- 
cending T* function, which reaches a maximum at some 
data-defined distance from the center of a distribution, and 
falls continuously to zero a farther distance out. The 
biweight location estimator requires an auxiliary estimate of 
scale. The auxiliary scale estimator in general use is the 
MAD (median absolute deviation from the sample medi- 
an), defined in Sec. llldl below. The definition of the 
biweight location estimator is 

CBi — M + ■ 
2W<1 (x, — M) ( 1 — u^)2 

■'K-l < 1 a-u2)2 (5) 

where M is the sample median and u¡ are given by 

( x, - AQ 
cMAD 

(6) 

The constant c is known as the “tuning constant” and is 
chosen to give Cßl high efficiency for a broad range of distri- 
butions. The best balance of efficiency for location estima- 
tion is found for c = 6.0, which includes data up to four 
standard deviations from the central location (Mosteller 
and Tukey 1977). 

What we define above is the so-called one-step biweight 
estimator. One might seek to improve the estimate of central 
location by iteration—taking Af as a first guess, calculating 
the Ui from the data, obtaining CBI, substituting the CBI 

estimate in the place of Min the above formulas, and contin- 
uing the process to convergence. Convergence is generally 
rapid, and usually requires no more than a few steps. For 
most samples the one-step estimator is sufficient. 

As shown by the simulations of Goodall (1983), ^BI re- 
tains high efficiency ( > 75%) for Gaussian as well as non- 
Gaussian distributions, even for n as small as 5. For «>10, 

is better than 80% efficient. By way of comparison, the 
sample mean is 100% efficient for Gaussian distributions 
but rapidly drops to zero efficiency in the presence of even 
modest deviations from normality. 

Any number of location estimators can be defined along 
the lines of the above examples, and one of those suggested 
above may not be the optimal estimator in any particular 
situation. However, all are superior to the sample mean, , 
both in terms of resistance and robustness. Given that a pure 
Gaussian population is rarely expected in observed cluster 
velocity distributions, we are encouraged to employ one or 
more of the above estimators. 

d) Resistant and Robust Estimators of Scale 

The standard deviation (Sa) is far and away the most 
commonly used estimator for the scale of a dataset. Unfortu- 
nately, the standard deviation lacks both resistance and ro- 
bustness. The careful worker usually will report several esti- 
mates of Sa based on the inclusion or exclusion of a small 
number of potential outliers. Estimates of physical quanti- 
ties such as a virial mass, or correlations of cluster properties 
such as x-ray luminosity with velocity dispersion (Quintana 
and Melnick 1982), will regrettably include additional scat- 
ter or bias due to an individual observer’s choice of a “pre- 
ferred” dispersion. 

Fortunately, there are a number of simple alternative 
measures of scale available. In all cases, the estimators de- 
fined below are either asymptotically equivalent to Sa or can 
be normalized to an identical metric. 

1) The median absolute deviation 

The median absolute deviation from the sample median, 
or MAD, is defined as 

MAD = median( |x:z — MI ). (7) 

MAD retains resistance because of the use of the median 
rather than an average of the second moments as with the 
standard deviation. Andrews et al. (1972) demonstrate the 
superiority of MAD over a number of simple alternative 
scale estimators. In particular, MAD possesses a breakdown 
bound of 1/2, and thus is tolerant to some asymmetry in the 
sample. For a standard normal population, W(0,1 ), MAD is 
equal to 0.6745. We normalize to the same metric as Sa by 
defining 5mad = MAD/0.6745. 

Simulations for samples of size n = 20 (Iglewicz 1983) 
indicate that SMAJ) is particularly suited for estimates from 
heavy-tailed distributions, where its efficiency exceeds 90%. 
Unfortunately, for samples that are Gaussian, or nearly so, 
the efficiency of SMAD drops precipitously, to approximately 
40%. 

2) The f spread and f pseudosigma 

The / spread is defined as the difference between the up- 
per and lower fourths of a data set: 
f=Fu-F„ (8) 

and is highly recommended for quick hand calculation. For 
large n the / spread of a standard normal distribution is 
1.349, thus we define an/ “pseudosigma” as Sf = //l.349. 
(See Beers and Gebhardt 1990 for a discussion of additional 
pseudosigmas and correction factors for the small-« case). 
The Sf estimator has moderate efficiency ( > 50% ) for non- 
Gaussian situations but is still only 40% efficient in the case 
of the Gaussian distribution. One appropriate use of Sf is to 
alert the user to strongly non-Gaussian behavior (such as 
one or several outliers) which might distort the canonical 
standard deviation. 

3) The biweight 

The simple scale estimators discussed above are not gross- 
ly inefficient, but it is desirable to do better. Although com- 
putationally more complex, the biweight estimate of scale 
has proven to be superior in many respects. The biweight 
scale estimator is defined as 
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*Sbi 
[SN<i (*/ ~^)2(1 -m?)4]1/2 

|2|MíI<1(1-^)(1-5«?)| 
(9) 

where w, are defined as above, and the tuning constant c is set 
equal to 9.0. Like the hi weight location estimator, may 
be calculated with an iterative procedure or stopped after 
one step. The results are similar in either case. The biweight 
scale asymptotically approaches Sa when the sample is tak- 
en from a Gaussian population. Lax ( 1985) shows that in 
the Gaussian situation (« = 20) the biweight scale estimator 
obtains 87% efficiency (more than twice the efficiency of 
'S'mad )• For the deviations from Gaussian distribution that 
he simulated, the biweight never dropped below 86% effi- 
ciency. Goodall (1983) suggests that the biweight also per- 
forms well for samples as small as /i = 10. 

extent, the various bootstrap methods allow one to assume 
that the quoted coverage is indeed being attained (Efron 
1987), but even this is still a matter of debate among statisti- 
cians, particularly for small to moderate sample sizes 
(Schenker 1985). 

We proceed in our discussion below in order of increasing 
computational effort, beginning with interval estimates 
based on sample estimates of location and scale described 
above, and concluding with a discussion of two popular re- 
sampling techniques, the jackknife and the bootstrap. 

a) Simple formulas for Location Confidence Intervals 

The classical method for estimating population 
100( 1 — a) % confidence intervals on the central location of 
a symmetric, Gaussian-distributed set of data is to compute 

4) The gapper—a scale estimator based on gaps 

Wainer and Thissen (1976) present an interesting alter- 
native scale estimator based on the gaps between order statis- 
tics. For the order statistics xi+u ..., xn1 with gaps de- 
fined by 

£/=*/+! -*,, /=1,...,«-1 (10) 
and a set of approximately Gaussian weights: 

Wi =i(n-i), (11) 

they obtain a robust estimator of scale: 

SG — 
■s/tt 

n(n-\) 
(12) 

The preliminary work of Wainer and Thissen suggests 
that SG possesses efficiency exceeding 90% for Gaussian 
samples as small as « = 10, and moderately high efficiency 
for a variety of contaminated Gaussian samples. 

IV. ALTERNATIVE METHODS FOR CONFIDENCE INTERVAL 
ESTIMATION 

As stressed by Efron and Tibshirani (1986), the estima- 
tion of a confidence interval for a given statistic is a funda- 
mentally more ambitious undertaking than the specification 
of that statistic’s expected value. Indeed, the development of 
satisfactory methodology for confidence interval estimation 
is still an effort very much in progress at the present time. 
The particular method one chooses to employ will depend, 
to a great extent, on the effort one is willing to expend and on 
the demands of the application at hand. The tradeoff is gen- 
erally an increase in computation in exchange for a decrease 
in assumptions concerning the nature of the underlying pop- 
ulation from which one is sampling. It is important to recog- 
nize the degree to which a given confidence interval depends 
on these assumptions. 

For choosing optimum sample estimates of location and 
scale, one is primarily concerned with the issue of variance. 
For confidence interval estimation, one must also consider 
the degree to which a given method provides the quoted cov- 
erage. For example, to what extent does a quoted 1er interval 
cover the true 68% range of variability in the estimated sta- 
tistic? The answer to this question cannot, in general, be 
obtained analytically, but rather must be obtained by con- 
ducting large and time-consuming Monte Carlo experi- 
ments. We have chosen not to fully explore the coverage 
issue in the present paper, but rather to concentrate on the 
variance of simple confidence interval estimators. To some 

ICu,v = cu± 
tn-\Sy 

fn 
(13) 

where i is the 100( 1 — a/2) percentage point of the t distri- 
bution for « — 1 degrees of freedom, and Cu and Sv are esti- 
mators of location and scale. In their study, DDd apply this 
method to obtain confidence intervals on Cß for clusters of 
galaxies, under the assumption of a Gaussian distribution of 
velocities. When the data come from contaminated or hea- 
vier-tailed distributions than Gaussian, however, and Sa 
are no longer efficient estimators of location and scale; the 
resulting confidence interval will include considerable scat- 
ter from sample to sample. In addition, the nonresistance of 
Sa for estimation of scale may arbitrarily inflate the estimate 
of confidence intervals about the central location. 

Iglewicz ( 1983) discusses a number of alternative meth- 
ods for assigning robust confidence intervals of the form 
C +t *S /fñ, calculated using the improved estimators of 
location and scale discussed above. This simple form is use- 
ful because the sampling distribution of central location esti- 
mators is close to Gaussian, even when the parent popula- 
tion itself is quite far from normality (a consequence of the 
Central Limit Theorem). In order to assure that the quoted 
coverage is attained, the t * are chosen to give intervals of at 
least 100(1 — a) % for a variety of Gaussian and non-Gaus- 
sian distributions. Simulations for sample sizes « = 10 
through « = 100 indicate that the values t * are well approxi- 
mated in the following manner. For the pair of estimators 
CM and Sf, take /* = *„_ j / l.075. For the biweight estima- 
tors, CBI andiSßj Mosteller and Tukey (1977) recommend 
^ *= ¿o.7(« -1) > which indicates the t value with 
[0.1 (n — 1)] degrees of freedom. Thus the robust confi- 
dence intervals given by 

ICmj = M± 
l.015jñ 
and 

(14) 

^CRT RT — CR 
^0.7 ( n - 1)*^B 

V« 
(15) 

are recommended. For convenient hand calculation, the for- 
mer is superior. For more efficient but computation-inten- 
sive implementation, the latter is preferred. When sampling 
from a Gaussian distribution, the robust confidence inter- 
vals represented by Eqs. ( 14 ) and (15) tend to be longer than 
those obtained by the standard methods. For non-Gaussian 
data, however, the robust intervals can be substantially 
shorter than the standard results. 
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One may also choose to estimate confidence intervals on 
the location directly from the sample by employing resam- 
pling techniques such as the jackknife or bootstrap, de- 
scribed in detail below. 

b) Simple Formulas for Scale Confidence Intervals 

In order to assess the confidence intervals on an estimate 
of scale, one might ask what the expected variance of a given 
scale estimator is when the data come from a population 
with a known analytic form. In the case of a Gaussian popu- 
lation, the variance of the standard deviation Sa closely fol- 
lows 2lx2 distribution (Hoel 1971 ). By assuming that veloc- 
ities in clusters of galaxies are distributed normally, DDd 
apply the classical formula for obtaining confidence inter- 
vals about : 

ISa±=[(v/X
2
T)

W2-\]S„, (16) 
where v is the number of degrees of freedom {n — 1 ). 

Unlike sampling distributions for estimates of central lo- 
cation, the sampling distribution of a scale estimator is quite 
sensitive to the nature of the parent population. For exam- 
ple, as discussed by Miller ( 1968), the interval given by Eq. 
(16) relies upon a theoretical variability which is only valid 
in the Gaussian situation. Because few cluster velocity sam- 
ples will be drawn from Gaussian parent populations, we 
cannot rely on the classical theory to give reasonable confi- 
dence limits. Also note that the classical procedure ex- 
pressed in Eq. (16) assumes that we have made a reasonable 
estimate of the scale Sa, which of course is fraught with non- 
resitance of its own. 

Because of the sensitivity of scale intervals to the form of 
the parent population from which the data are drawn, simple 
formulas such as Eq. (16) should not be expected to perform 
well for the variety of populations expected for distributions 
of cluster velocities. Direct assessment via resampling is in- 
dicated. 

c) Resampling Intervals for Location and Scale 
1) The statistical jackknife and variations 

The statistical jackknife was introduced as a rough and 
ready tool for assessing the stability of sample statistics for 
which no asymptotic theory exists, or in cases where the data 
analyst has little or no idea what the underlying parent popu- 
lation resembles. The jackknife has been employed by a 
number of workers to estimate errors in astrophysical quan- 
tities, for example, viral masses and mass-to-light ratios 
(Bothun et al. 1983; Beers et al. 1984; Ostriker et al. 1988). 

The jackknife produces an estimator based on n “pseudo- 
values/’ Each pseudovalue of a statistic is calculated after 
the removal of one datum from the sample. That is, we ob- 
tain the set of pseudovalues y*j such that 

y* = « A» - (« - Da, i= (D) 
where j>all is that value of the statistic calculated using all the 
data, andjD is the statistic calculated after excision of the/th 
point. The average ofy^ is taken as the jackknife estimate of 
the statistic: 

4 = 
2.4 - (l/nHlAi)2 

y* =• 

The variance of y* is given by 

(18) 

(19) 
n(n — 1) 

Tukey (1958) proposed the central assumptions of the 
jackknife technique, that the pseudovalues of Eq. (17) could 
be treated as approximately independent and identically dis- 
tributed random variables for a variety of situations. If this 
assumption holds true, then the statistic s* should have an 
approximate t distribution with n — \ degrees of freedom. A 
jackknife estimate of location interval thus takes the form 

ICju — Cu + ^ - (20) 

When the sample mean is jackknifed, simple algebra re- 
veals that s*, the jackknife estimate of its variance, is identi- 
cally equal to the estimate obtained from the sample stan- 
dard deviation S;;/«. This property suggests that jackknife 
intervals for other robust location estimators, such as CBI, 
might be profitably employed. 

The jackknife technique is also useful for constructing ap- 
proximate confidence intervals of scale estimators: 

(2D 

One concern when obtaining confidence intervals for scale 
estimators from Eq. (21 ), is that the pseudovalues calculat- 
ed by jackknifing a given scale estimator can become nega- 
tive, which is unphysical. We can avoid this annoyance by 
jackknifing the logarithm of the scale estimator rather than 
the estimator itself. The resulting intervals will be asymmet- 
ric, consistent with the fact that scale estimators are un- 
bounded in the positive sense but remain bounded by zero at 
the low end. The procedure is similar to that defined above, 
except one finishes by taking the antilog. The confidence 
interval is then 

ISJLi = antilog (log Sv ±tn_1 s*L ), (22) 

where ^ is obtained by jackknifing log Sv. For a worked 
example of these calculations, see Mosteller and Tukey 
(1977). As noted by Mosteller and Tukey, the use of the 
logarithm may introduce a bias in the estimate, but one that 
is at least partially compensated for by the bias-reduction 
character of the jackknife (Miller 1974). 

One technical point bears mentioning. The jackknife con- 
fidence intervals are actually the intervals about the jack- 
knife estimate y* [ Eq. (18)], rather than about the estima- 
tor one is studying. In practice, the difference between the 
jackknife estimators and the estimators Cu or Sv is small; 
this slight inconsistency should not discourage the use of the 
jackknife in the specification of approximate confidence in- 
tervals (see Yang and Robinson 1986). 

2) Bootstrap intervals 

Rather than making assumptions concerning the form of 
the sampling distribution for a given statistic, as does the 
jackknife, the bootstrap technique relies on the generation of 
large numbers of nonindependent samples (based on ran- 
dom draws with replacement) from the original dataset. An 
empirical sampling distribution is obtained by calculating 
the statistic of interest for each of the “bootstrapped” data- 
sets. To the extent that the bootstrap version of a statistic’s 
sampling distribution matches the real (asymptotic) sam- 
pling distribution, one can use the bootstrap to construct 
confidence intervals on the estimated value of this statistic 
( see Efron and Tibshirani 1986 for a review of the theory and 
development of this technique). Below we discuss four boot- 
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strap confidence interval techniques and comment on their 
application for velocity data in clusters and groups of galax- 
ies. 

i) Standard intervals. If we are willing to assume that the 
bootstrap sampling distribution is unbiased and normal in 
shape, confidence intervals can be obtained directly from an 
estimate of the standard deviation of this distribution. This 
assumption is essentially the same as made by the jackknife, 
except that the jackknife makes an explicit attempt to cor- 
rect for the effects of bias. The standard bootstrap intervals 
for location and scale are given by 

= Cu Azzsb (23) 

and 

ISBv
=Sv+zsbi (24) 

respectively, where z is the 100(1 — a/2) percentage point 
of a standard normal variate. We use the normal deviate 
rather than a deviate from the t distribution as before be- 
cause t asymptotically approaches z in the limit of large 
numbers of bootstrap samples. Standard intervals are useful 
when one does want to carry out a large amount of bootstrap 
resampling; after all, the number of bootstraps merely has to 
be great enough to beat down the sampling noise in sb. Efron 
( 1987 ) suggests that as few as 25 bootstraps can give reason- 
able results; 100 replications are recommended. An astro- 
physical example of the Standard Interval calculation can be 
found in Barrow, Bhavsar, and Sonoda (1984), and Ling, 
Frenk, and Barrow ( 1986). These authors obtain Standard 
Intervals to assess errors in the determination of correlation 
coefficients and correlation lengths from catalogs of galaxy 
positions. 

ii) Percentile intervals. One may generalize the above re- 
sult by abandoning the assumption that the sampling distri- 
bution is normal, and obtaining confidence intervals directly 
from the empirical sampling distribution itself. That is, one 
takes the Percentile Intervals /CP and IS¥ to be defined by 
the bootstrap estimate a/2% in from each endpoint of the 
sampling distribution; Clearly, stable estimates of percentile 
intervals will require considerably more bootstrap sampling 
than the standard intervals. Efron ( 1987) suggests that 500- 
1000 bootstrap samples are required to obtain accurate per- 
centile intervals. 

Hi) Bias-corrected percentile intervals. The Bias-Corrected 
Percentile Intervals, ICBC and ISBC attempt to correct for 
the problem of bias in the bootstrap sampling distribution. 
Simply put, if the median of the bootstrap sampling distribu- 
tion is not equal to the maximum-likelihood estimator of the 
statistic of interest, the percentile method will not yield cor- 
rect coverage. The bias-corrected method shifts the regular 
percentile intervals by an amount proportional to the differ- 
ence between these two quantities. Efron ( 1987) introduces 
a refinement to this procedure which increases its realm of 
application, particularly for the case of small to moderate n 
and for samples drawn from asymmetric parent populations. 
The refined intervals /CBC* and /SBC* are second-order 
asymptotically correct for a small price in the form of in- 
creased computation. 

V. A COMPARISON OF ESTIMATORS 

In the sections above, we have defined a number of alter- 
native estimators for quantifying the nature of velocity dis- 
tributions for clusters and groups of galaxies. We now wish 

to compare the relative efficiencies of these estimators by 
examining their behavior when applied to simulated datasets 
that cover the range of deviations from normality we might 
expect in velocity distributions for typical clusters and 
groups of galaxies. It is important at this point to emphasize 
that we are not attempting to recover the input parameters of 
the simulations. Rather, we are simply evaluating the statis- 
tical behavior of each estimator. The “true” parameters that 
correspond to a given situation will not, in general, be re- 
vealed by the use of particular estimators of location and 
scale—a maximum-likelihood analysis of a completely 
specified physical model would be required. 

a) Case A—Superposed Gaussians of Identical Location 

One situation we would like to simulate is the case where a 
simple Gaussian distribution G(ti,a) is observed in the pres- 
ence of a broader Gaussian of identical location but differing 
scale G(jLtyka). That is 

GkiftyvAa) = aG(fi,cr) + (1 — a)G(/Li,kor), (25) 

where a and ( \ — a) represent the relative fraction of values 
taken from the two distributions ( 10% <a<50% ), and /: is a 
number between 2 and 5. Such a mixture might be realized in 
several astrophysical situations—(a) observations of a sub- 
cluster within a cluster (or cluster within a supercluster), 
(b) observations of cluster galaxies in the presence of corre- 
lated foreground/background contamination, or (c) obser- 
vations of galaxies in the same cluster but with differing orbi- 
tal distributions (e.g., ellipticals versus spirals in the Virgo 
Cluster). For a given cluster, the presence of a long-tailed 
symmetric component may not be readily recognizable, but 
at the very least we should employ estimators whose efficien- 
cies are not unduly influenced by its existence. 

b) Case B—q wild 

A second instance that occurs in real clusters is the #-wild 
situation. An otherwise uncontaminated Gaussian distribu- 
tion G(piya) is observed in the presence of a small number 
(#) of observations from a much broader, identically located 
Gaussian population G{uykayq). Here q is taken to be 
between 1 and 3, and k is chosen between 5 and 10. The q- 
wild situation will usually occur in small datasets, such as 
groups or subclusters, where the observer is typically forced 
to resort to a subjective censoring of suspected outliers in 
order to report “reasonable” estimates of location and scale. 

Gb {/Li,a,k,q) — G(/i,a) + Gifi.ka.q). (26) 

c) Case C—The General Case 

There are many scenarios that we could posit to corrupt a 
simple Gaussian velocity distribution of cluster velocities, 
such as a mixture of galaxies with kinematically different 
central locations, or the superposition of a cluster distribu- 
tion on the general cosmological background. Of course, 
even without these complications, we have argued that there 
is no good reason to expect that a simple Gaussian is repre- 
sentative of the underlying velocity distribution in most clus- 
ters. Long asymmetric tails, for example, present a particu- 
lar challenge to most estimators. An optimal resistant and 
robust estimator should perform well even when a substan- 
tial fraction of the data is displaced to one side or the other 
from the bulk of the batch. Thus we would like to include in 
our simulations a formulation for a family of deviations from 
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normality that accounts for the problems of increasing 
asymmetry and tail weight. 

Hoaglin and Peters ( 1979 ) discuss one such function. If Z 
represents a random variable from a standard normal distri- 
bution, then 

Y=g-\<*z-\)ekhz2 (27) 
is said to follow the Tukey T(h,g) distribution. The param- 
eters {h,g) determine the heaviness and symmetry of the 
tails, respectively. 7X0,0) is the standard normal. T(hfl) is 
symmetric and increases in elongation with increasing h. For 
example, 7X0.97,0) is approximately Cauchy. 7X0,g) is log- 
normal and is increasingly skewed as g increases. 

We can allow for an arbitrary choice of location and scale 
here and in the distributions above by forming 

X-C + SY, (28) 
where C and S are the desired location and scale, respective- 
ly. For the simulations discussed below, we arbitrarily set 
C= 5000 and 5= 100. 

d) The Simulations 

We examine 72 different situations, exploring the param- 
eter space of the three cases outlined above. For each situa- 
tion, we draw one thousand random samples of size 5,10,20, 
50, 100, and 200, representative of the typical sizes of veloc- 
ity samples in groups or clusters. 

For each realization, 12 estimators of location Cu are ob- 
tained: C^, Cm, C5, C10, C20, Cmid, C30, C40, Cbm, 
CXRI, and CBI. Six estimators of scale Sv are obtained: 5^, 
^cr» *$/> *^MAD > *5(3 > an^ *$61 • 

The formulas of Sec. IVa are used to construct 68% ( 1er) 
confidence intervals on C^, CM, and Cm based on sample 
estimates of location and scale. In addition, we obtain jack- 
knifed and refined bias-corrected bootstrap estimates of con- 
fidence intervals about the biweight location estimator CBI. 
For each situation, one thousand bootstrap replications are 
used to define the empirical sampling distribution. 

We obtain 68% confidence intervals about the scale Sa 

from the classical formula based on the sample standard de- 
viation ISa [Eq. (16)]. We calculate jackknife intervals 
about Sa, SBI, and SG. Intervals are also obtained by jack- 
knifing log Sa, log SBl, and log SG. Refined bias-corrected 
bootstrap intervals are calculated for the biweight estimator 
of scale SBl. 

ej Relative Efficiencies of the Estimators 

We calculate the variance of each statistic from the one 
thousand realizations simulated for each situation. In order 
to compare the relative efficiency of the estimators of central 
location Cu, we obtain the optrim-efficiency: 

var Cu 
ec= 2.X 100%, (29) 

var Cu 

where var CUo represents the minimum variance estimator 
tested. 

In general, the variance of a scale estimator for a data 
batch will depend on the central location. To avoid this de- 
pendence in comparisons of the variances of Sv we employ 
(following Iglewicz 1983): 

var (In SUo ) 

var (In Sv ) 
X 100%, (30) 

where var (In SVq ) represents the minimum variance estima- 
tor tested. 

An optimum confidence interval for a given estimator is 
the shortest interval still providing the quoted coverage. It is 
outside the scope of the present investigation to establish 
that a given interval achieves coverage. Rather, we assume 
that the refined bias-corrected bootstrap intervals on loca- 
tion and scale (7CBCSie and 7SBC* ) provide accurate measures 
of the true confidence interval ( as suggested by Efron 1987). 
As discussed below, the biweight estimators of location and 
scale are superior for a wide variety of situations, so we 
choose to compare our derived confidence intervals to the 
bootstrapped interval lengths of these estimators. Again fol- 
lowing Iglewicz (1983), we obtain relative efficiencies for a 
set of interval estimators using: 

fcl = (average BCg! interval lengthYxi()o% 
\ average interval length / 

(31) 

A similar calculation is used to obtain eSI. 
Note that we have defined relative efficiency for confi- 

dence intervals such that intervals that provide, on the aver- 
age, less coverage than the refined bias-corrected bootstrap 
intervals will have an apparent efficiency grazter than 100%. 
This should not be taken as an indication that they are better 
than our standard of comparison, but rather that they 
should be considered suspect due to their failure to provide 
coverage. 

f) Results of the Simulations 

In Table I we summarize the input parameters, or range of 
parameters, used for each situation. 

To choose the best estimator, one would not expect to 
refer to a table of efficiencies for every different situation. 
Rather, one would like to judge which estimators are best 
suited for a variety of situations. Small differences in relative 
efficiency (<10%) will not be noticeable in the application 
of these estimators, thus we have “graded” each estimator 
on a familiar four-point scale. Estimators of central location 
and scale that achieve relative efficiency 90%<e< 100% for 
a given situation are given a score of 4.0, those with 
80%<6 <90% are assigned a grade of 3.0, those with 
70% <6 < 80% are given a 2.0, those with 60% < 70% are 
assigned a 1.0, and those estimators with efficiencies below 
60% are given a score of 0. The overall score for a given 
estimator in each of cases A, B, and C above is obtained from 
a straight average of its score in each situation. The results 
are presented in Table II. 

Relative efficiencies of confidence intervals need to be 
considered somewhat differently from the relative efficien- 
cies of sample estimates of location and scale. Indeed, the 
desire to obtain an acceptable shorthand method of deriving 
satisfactory intervals encourages us to be somewhat more 
lenient in applying our decision criteria. For this reason, and 
because of the limited resolution provided on confidence in- 
tervals from only one thousand realizations, we choose to 
grade the interval efficiencies in the following manner. Inter- 
vals with efficiencies in the range 81%<£< 100% (corre- 
sponding to an actual ratio of interval length within 10% of 
the bootstrap biweight interval) are given a grade of 4.0, 
those with 64%<£< 81% (interval ratio between 10% and 
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Table I. Simulations of cluster radial-velocity distributions. 

Situation Parameters 

Aj : (¿ = 2,0 = 0.10) 
A2 : (¿ = 2,a = 0.20) 
A3 : (¿ = 2,o = 0.50) 
A4 : (¿ = 3,a = 0.10) 
A5 : (¿ = 3,o = 0.20) 
A6 : (¿ = 3,o = 0.50) 
A7 : (¿ = 5,o = 0.10) 
A8 : (¿ = 5,a = 0.20) 
A9 : (¿ = 5, o = 0.50) 

Bj : (¿ = 5,5 = 1) 
B2 : (¿ = 5,5 = 2) 
B3 : (¿ = 5,5 = 3) 
B4 : (¿ = 7.5,5 = 1) 
B5 : (¿ = 7.5,5 = 2) 
B6 : (¿ = 7.5,5 = 3) 
B7: (¿ = 10,5 = 1) 
B8 : (¿ = 10,5 = 2) 
B9 : (¿ = 10,5 = 3) 

Ci : (¿ = 0,5 = 0) (Gaussian) 
C2 : (h = 0,0.10 < 5 < 0.25) 
C3 : (¿ = 0,0.50 < 5 < 0.95) 
C4 : (0.10< ¿<0.25,5 = 0) 
C5 : (0.10 <h< 0.25,0.10 <g< 0.25) 
C6 : (0.10 <h< 0.25,0.50 <g< 0.95) 
C? : (0.50 <¿<0.75,5 = 0) 
C8 : (0.50 <h< 0.75,0.10 <g< 0.25) 
C9 : (0.50 < ¿ < 0.75,0.50 <g< 0.95) 

20% ) are assigned a grade of 3.0, those with 49%<6 < 64% 
(interval ratio between 20% and 30%) are assigned a 2.0, 
those with 36%<6 < 49% (interval ratio between 30% and 
40%) are assigned a 1.0, and those estimators with efficien- 
cies below 36% are given a score of 0. 

As noted above, the efficiencies of confidence intervals 
may exceed 100%, indicating that they are shorter than our 
standard of comparison. We penalize these estimators for 
their lack of coverage by assigning scores as follows. Estima- 
tors with efficiencies in the range 100% < £< 121 % are given 
a 3.5, those with 121% <£<144% are assigned a grade of 
2.5, those with 144% <6<169% are given a 1.5, those with 
169% <£<256% are assigned a 0.5, and those estimators 
with efficiencies exceeding 256% are given a score of 0. 
Scores for estimators of confidence intervals are presented in 
Table III. 

The overall grades assigned an estimator should provide a 
good indication of its utility in application to real data. 
Grades above 3.0 should be considered superior. Grades 
above 2.0 are adequate, while grades in the range 1.5-2.0 
should be considered marginal. Estimators with grades be- 
low 1.5 indicate that for much of the parameter space ex- 
plored in each case, the estimator has consistently high vari- 
ance compared to its competition, and should be generally 
avoided. 

In choosing among estimators, one should also consider 
the stability of efficiency across the range of parameters for 
each case. This information is encoded in the form of profile 
plots in Figs. 1 and 2. For each estimator, the profile plot 
codes the relative efficiency in the form of height above the 

horizontal axis. For each case, the situations are considered 
in the order given in Table I, which corresponds roughly to 
increasing asymmetry and tail weight. The shading of the 
profile plots represents the overall score discussed above. A 
superior score (3.0 or above) is given the darkest shading. 
Adequate scores (2.0-3.0) are given a light shading. Mar- 
ginal scores (1.5-2.0), as well as unacceptable (<1.5) 
scores, are left unshaded. Large variations of efficiency from 
situation to situation are clearly reflected in Figs. 1 and 2 as 
jagged profile plots. Estimators of roughly equivalent effi- 
ciency (indicated by a similar shading) that have flat pro- 
files are preferred over those with jagged behavior. 

As noted above, the relative efficiencies of confidence in- 
tervals sometimes exceed 100%. For these situations, the 
relative heights of the profiles in Fig. 2 encode the absolute 
difference between the measured efficiency and 100%. 

VI. RECOMMENDED ESTIMATORS 

The choice of an estimator should be guided, foremost, by 
the sample size n. For a given sample size the robustness 
indicated by the grades in Tables II and III should be consid- 
ered, as well as the stability of efficiency indicated by the 
profile plots shown in Figs. 1 and 2. Among estimators of 
roughly equivalent robustness and stability of relative effi- 
ciency, ease of computation might be considered important 
for some applications. Below we discuss our results for the 
tiny-, small-, intermediate-, and large-« cases. 

a) Tiny n (n=5) 

For sample sizes as small as « = 5, one is not blessed with 
a wide variety of choices. Simple robust estimators of loca- 
tion, such as CM, CMID, and CXRI appear quite satisfactory. 
CM is particularly useful in maintaining low variance for 
case B contamination, and is a very good performer over the 
broad range of case C tails and asymmetry. It is instructive to 
observe the rapid degradation of the mean in the face of 
case A contamination (Fig. 1 ), as well as for case B (where 
the mean never achieves greater than 54% relative effi- 
ciency). For case C, is a superior estimator only for the 
Gaussian situation, Cx, and the mild asymmetry situation, 
C2. As tail weight or asymmetry are increased, fails rela- 
tive to its competitors CM, CMID, CBM, CXRI, and CBI. We 
are encouraged to see £bi perform so well in the tiny-« case. 

We now consider the estimators of confidence intervals on 
location. The canonical estimator IC^a is superior for case 
A contamination, and adequate for case C, although it 
breaks down rather rapidly for the extreme-asymmetry and 
heavy-tail situations. The estimator ICMJ consistently un- 
derestimates the lengths of the interval relative to that ob- 
tained by the bootstrap of the biweight location, and should 
probably be avoided for the tiny-« case. It is of some concern 
that /Ca ^ underestimates the interval length in the Gaussian 
case, Cx. The biweight interval ICBl Bl is superior for all 
three cases. The jackknifed biweight interval /CJbi is ade- 
quate or superior, but suffers somewhat from excessive vari- 
ation in efficiency across situations. 

Only two estimators of scale can be recommended in the 
tiny-« case, the canonical standard deviation Sa and the gap- 
per SG. 

The confidence intervals on scale obtained by jackknifing 
the biweight appear adequate for all three cases, although 
the variation of efficiency for case B contamination is rather 
severe. The canonical interval ISa is even a little better be- 
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haved. It is worth noting that, for much of the parameter 
space we explore, the interval estimates on scale all have a 
somewhat larger variance than the bootstrap intervals we 
compare them to. 

b) Small n (n=10) 

The median is an adequate or superior estimator of central 
location for the small-« situation, but the biweight is even 
better. Among the simple estimators, CMID and CTRI are 
consistent performers, as are the moderately to heavily 
trimmed estimators ^20 and ^30 . Not surprisingly, the mean 
is a poor estimator for distributions that diifer from Gaus- 
sian. The clipped estimator has lower variance than the 
mean, but possesses considerably higher variance than its 
competitors. 

The confidence intervals provided by ICm m are superior 
for all three cases. The estimators /CM/ and /Cj are mar- 
ginal or superior alternatives. 

Among estimators of scale for small «, the canonical stan- 
dard deviation is superior for case A contamination, fails 
miserably for case B, and is only adequate for case C. The 
gapper or bi weight estimators of scale are the preferred alter- 
natives. The 3cr clipper cannot be recommended. 

The jackknife of the gapper is a superior estimate of confi- 
dence intervals on the scale for case A, and adequate for 
cases B and C, whereas the canonical estimator ISa is only 

adequate or marginal. The jackknife of the standard devi- 
ation ISj is superior for case A, and adequate for case C, but 
only marginal for case B. The jackknife of the biweight is 
adequate or marginal for cases A and C, but is markedly 
poor in case B, failing to provide the necessary coverage to 
handle the (/-wild case. 

c) Intermediate n (20<n^50) 

The intermediate-« case will apply for most velocity sam- 
ples of clusters now and in the near future. The clipped esti- 
mator C3<7. is superior for this range of sample sizes only for 
case B contamination, is adequate for case A contamination, 
and cannot be recommended for the samples with the asym- 
metric or heavy tails of case C. Lightly trimmed estimators 
of location C10 or C20 are better behaved when one considers 
all three cases of contamination. The resistance of CMID is 
also encouraging. The median, CM, appears particularly 
good for cases with large asymmetry and tail weight, as do 
the heavily trimmed estimators C30 and CA0. The best esti- 
mator over the range 20<«<50 is the biweight location CBI. 

The confidence intervals about the central location are 
clearly dominated by the jackknife of the biweight /CJbi , or 
the computationally simpler biweight estimate /CBIBI. The 
estimator ICMJ provides a superior or adequate alternative 
in all cases, and might be preferred for some applications 
because it always provides coverage. 

Table II. Efficiency scores for estimators of central location and scale. 

N Case Cß Czo Cm Cs Cío Cjo Cmid C30 C40 Cbm Ctri Cbi\ S„ S3a Sf Smad Sa Sbi 
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Fig. 1. Profile plots of relative efficiency for estimators of central location and scale. The plots are grouped by sample size n. The shading of each 
profile corresponds to the overall efficiency score listed in Table II. The highest-efficiency estimators are assigned the darkest shading. 
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Fig. 2. Profile plots of relative efficiency for estimators of confidence intervals on central location and scale. The plots are 
grouped by sample size n. The shading of each profile corresponds to the overall efficiency score listed in Table III. The 
highest-efficiency estimators are assigned the darkest shading. 
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Table HI. Efficiency scores for estimators of confidence interval length. 

N Case ICßi<T ICmj ICbi,bi ICjbi | ISa ISj9 ISjBI ISj0 ISjl^ ISjlBi ISjlg 

44 

The bi weight estimator of scale SBl is clearly the estimator 
of choice over the sample range 20<n<50. The canonical 
standard deviation Sa is adequate only for case A contamin- 
ation, and cannot be recommended for cases B and C. The 
clipped scale estimate cannot be recommended for case 
A or case C, and only climbs to superior in case B as « ap- 
proaches 50. Although the gapped estimate SG is superior 
for case A contamination, its poor performance for case B 
and marginal to adequate performance for case C discourage 
its general use. 

The jackknife confidence interval on the biweight, ISJbi , is 
adequate or marginal in all cases; the jackknife log of the 
biweight scale, ISJLm, is even somewhat better behaved. The 
estimator ISj is only adequate for case A contamination, 
and is unacceptable or marginal for cases B and C. The ca- 
nonical interval ISa is barely adequate or marginal for most 
cases. 

dj Large n (100<n<200) 

The large-« situation will only be realized in practice for 
quantifying the global properties for the few clusters that 
have complete redshift results for their bright members and 
appear free of substructure which would point toward analy- 

ses of smaller subsamples of velocities. To our knowledge, 
the only published sample of velocities that satisfies both of 
these criteria is that for A2670 (Sharpies, Ellis, and Gray 
1988). 

The clipped estimator C3<J is superior for this range of 
sample sizes only for cáse B contamination, and marginal or 
adequate for case A and case C. The heavily trimmed estima- 
tors of location C20, CMID, or C30 are superior estimators for 
case C, but do not provide adequate resistance for case B 
contamination. Once again, the biweight location estimator 
^BI can be recommended as providing the best combination 
of resistance and efficiency across all three cases of conta- 
mination considered in this study. 

The biweight confidence interval ICm m once again is su- 
perior for all cases; the jackknife of the bi weight /CJbi is even 
better, as it exhibits less variance of efficiency for case C. The 
estimator ICMJ provides an adequate or superior alternative 
to the canonical estimator IC^a, which, although adequate 
or marginal in most cases, degrades rapidly in the face of 
increasing asymmetry or tail weight. 

The biweight estimator of scale *Sbi is the estimator of 
choice for «>100. The canonical standard deviation Sa can- 
not be recommended. The clipped scale estimate Sla cannot 
be recommended for case A, is superior or adequate for case 
B, and adequate or marginal for case C. Although the 
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Table IV. Recommended estimators for location, scale, and confidence intervals. 

45 

Sample size n Cu ICU,V sv ISV 

CmiCmid>Ctri ICp^iICßLBi S^Sg IS^ISjßj 

Cbi ICjbi 

Cm^C2o^Cmid ICmj,ICbi,bi Sg^Sbi ISjg 

C30, Ctri, Cbi ICjbi 

Cio,C'2o,C'mjd,C3o ICuj^ICbIíBI Sbi ISjbi,ISjlb 

ICjbi 

ICmj,ICbi,bi Sbi ISjbi,ISjlb 

icJbi 

10 

20-50 

100-200 

Cm,Ctri,Cbi 

Cbi 

gapped estimator SG is superior, or nearly so, for case A 
contamination, its poor performance for cases B and C dis- 
courage its general use for large n. 

The jackknifed biweight interval, ISJm, or the jackknife 
log of the biweight, /*S'JLbi , provide adequate or superior esti- 
mates of the scale confidence interval for all cases. The esti- 
mator ISj is only adequate for case A contamination, and 
unacceptable for cases B and C. The canonical interval ISa is 
marginal or unacceptable for all but case B contamination, 
where it achieves an adequate or superior score. 

VII. SUMMARY AND DISCUSSION 

Table IV summarizes the results of our study. For situa- 
tions we expect to confront in the analysis of radial-velocity 
data in clusters of galaxies, the estimators of location Cu, 
scale Svi and their associated confidence levels ICUtV and ISV 

listed in Table IV all proved to be adequate or superior (in 
the language of our rudimentary grading system). Although 
there might be some disagreement over particular cases, we 
believe our grading scheme gives a fair picture of the effi- 
ciency and robustness of a given statistic. Obviously, if one 
has a priori knowledge of the parent population (e.g., when 
sampling from an input dynamical model), a more refined 
choice of estimators might be made. To paraphrase Tukey, it 
is not so important which robust estimator is used, but that 
one is used. Especially in a field where data are difficult and 
expensive to obtain, the use of efficient estimators should be 
highly encouraged. 

It is noteworthy that the clipped estimators and ^30- 
do not, in general, provide low enough variance to be useful 
for cluster velocity analysis. The 3cr-clipped estimators fail 
because the initial estimate of a is dominated by the presence 
(or absence) of outliers, leading to a substantial sample-to- 
sample variance. Apparently, if one is going to clip, the sam- 
ple-independent clippers such as C10, C20, CMID,... should 
be employed. Estimators that dilute the effects of outliers in 
a continuous fashion, as in the biweight, have been shown to 
be more generally useful. 

Every investigation of cluster velocity distributions is 

faced with the vexing problem of how to assign realistic con- 
fidence intervals on estimates of location and scale. There 
seems little question that the refined bias-corrected boot- 
strap intervals /CBC* and ICBC* provide the best available 
empirical estimates. They are, however, computationally ex- 
pensive, and require a minimum of 500-1000 bootstrap rep- 
lications to yield reliable results. Our tests indicate that a 
number of less computation-intensive methods are reasona- 
ble alternatives. 

Confidence intervals about the location can be obtained 
directly from sample estimates of location and scale using 
the simple formulas of Sec. I Va, based on the CM and Sf or 
Cm and ^bi • A jackknife estimator such as 7Cj provides 
useful intervals but requires no more than n sampling steps. 
An asymptotically equivalent procedure to the jackknife, the 
bootstrap Standard Interval, requires at most one hundred 
bootstrap replications, and may prove useful for some appli- 
cations. It is worth emphasizing that, with the exception of 
tiny-« samples, the canonical procedure for forming a loca- 
tion confidence interval based on and Sa is not a low- 
variance estimator of interval length. 

Because sampling distributions of scale estimators are 
generally long tailed and asymmetric, confidence intervals 
on the scale of a data batch should ideally be bootstrapped. 
One can obtain approximate intervals, however, with less 
computational effort. For «<10 our tests indicate that the 
classical procedure is adequate, but that several jackknife 
estimators are better. For larger samples the jackknifed 
biweight and log biweight estimators are best. 

As larger and more detailed samples of velocities in clus- 
ters become available, we should look to increasingly sophis- 
ticated statistical analysis as a means of extracting the maxi- 
mum information possible. The present paper represents 
only a first step in this direction. 

Thanks to several colleagues, in particular M. Fitchett 
and M. West, for their patience in awaiting the results of this 
work, and for encouraging us to bring it to fruition on a finite 
timescale. We also acknowledge the Department of Physics 
and Astronomy at Michigan State for the generous allot- 
ment of computer resources which made this work possible. 
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Note added in proof: The authors will make available, this paper. Please send a 5\” or 3*" floppy disk along with 
upon request, standard fortran source code for calcula- any request, 
tion of the estimators and confidence intervals discussed in 
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